

32-bit Processor with Posit Arithmetic Coprocessor for Embedded Systems

Hyun Woo Oh, Kwon Neung Cho, Jeong Eun Kim, Sang Ho Lee, and Seung Eun Lee

Dept. of Electrical Engineering

Seoul National University of Science and Technology

Abstract

We propose a 32-bit processor with a floating-point coprocessor. The proposed processor adopts MIPS instruction set architecture (ISA) and the coprocessor is based on posit number system. We fabricate the processor with Samsung 28nm CMOS technology.

Chip Verification

Architecture

울과학기술대학교

The system with our processor consists of 32-bit MIPS processor and external flash memory.

[Architecture of the proposed processor]

1) MIPS Compatible Core

The core includes thirty-two 32-bit general-purpose registers (GPR), 5-stage pipelines, data forwarding unit, and stall unit.

- In order to verify the chip with proposed design, we designed the PCB and mount the chip to the designed PCB.
- The JTAG and flash controller on proposed processor work as intended, however, register-transfer level (RTL) error exists on the flash controller and should be fixed.
- Thus, we verified the posit coprocessor and the MIPS processor utilizing pre-programmed flash memory and checking the printed results.

		Functionality Test i1 = 0x50 i2 = 0x23 f1 = i1 / i2 = 0x44924924 = 2.285 f2 = i2 / i1 = 0x28000000 = 0.427
JTAG Portue JTAG IC Serial Portue Serial IC	STOHW	$f_{2} = f_{2} / f_{1} = 0x350000000 = 0.437$ $f_{1} + f_{2} = 0x45724924 = 2.7232140$ $f_{1} - f_{2} = 0x43649248 = 1.8482140$ $f_{1} * f_{2} = 0x3FFFFFFF = 0.99999999$ $f_{1} / f_{2} = 0x49397829 = 5.2244892$ $-f_{1} + f_{2} = 0xC3649248 = -1.848214$ $-f_{1} - f_{2} = 0xC5724924 = -2.723214$ $-f_{1} * f_{2} = 0xBFFFFFFF = -0.9999999$ $-f_{1} / f_{2} = 0xC9397829 = -5.224489$ $sqrt(f_{1}) = 0x420D4C77 = 1.5129869$
Flash		<pre>int32_t(f1) = 2 int32_t(f2) = 0 int32_t(f1 + f2) = 2 posit32(1) = 0x40000000 = 1.00000 f1 != f2 f1 > f2 f1 >= f2 f1 >= f2</pre>

[Verification prototype]

Functionality lest
i1 = 0x50
i2 = 0x23
f1 = i1 / i2 = 0x44924924 = 2.28571402
$f_2 = i_2 / i_1 = 0 \times 3B000000 = 0.43750000$
f1 + f2 = 0x45724924 = 2.72321406
f1 - f2 = 0x43649248 = 1.84821402
f1 * f2 = 0x3FFFFFFF = 0.99999994
f1 / f2 = 0x49397829 = 5.22448926
-f1 + f2 = 0x(3649248 = -1.84821402)
-f1 - f2 = 0x(5724924) = -2.72321406
$-f1 * f2 = 0 \times REFEREE = -0.99999994$
-f1 / f2 = 0x(9397829) = -5.22448926
sart(f1) = 0x(2)00/(77 - 1)51298698
in+32 + (f1) = 2
in+32 + (f2) = 0
$\frac{11}{22} - \frac{12}{2} = 0$
$1nt32_t(t1 + t2) = 2$
posit32(1) = 0x40000000 = 1.00000000
f1 != f2
f1 > f2
f1 >= f2

[Verification results]

[MIPS compatible core]

2) Posit Arithmetic Coprocessor

The coprocessor provides 32-bit, es=3 posit arithmetic features with 32 of 32-bit coprocessor registers which are called CP1R. The difference between the core and the coprocessor is that the ALU, in coprocessor, is replaced with 32-bit posit arithmetic unit (PAU).

Chip Implementation

[Chip layout and photograph]

Chip specification		
Technology	28nm CMOS	
Core Voltage	1.0V	
I/O Voltage	1.8V	
Chip Size	4mm x 2mm	
Operating Frequency	50MHz	
Area	2140,830µm ²	
Power Consumption	3.74mW	
Operating Temperature	-40°C~125°C	

[Posit arithmetic coprocessor]

Acknowledgement

The chip fabrication and EDA tool were supported by the IC Design Education Center (IDEC), Korea.

